目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
18.9 空调及通风系统监控
18.9.1 对新风机组的监控应符合下列规定:
1 新风机与新风阀应设联锁控制。
1 新风机与新风阀应设联锁控制。
2 应设置新风机的自动/手动启停控制。
3 当发生火灾时,应接受消防联动控制信号联锁停机。
4 在寒冷地区,新风机组应设置防冻开关报警和联锁控制。
5 新风机组应设置送风温度自动调节系统。
6 新风机组宜设置送风湿度自动调节系统。
7 新风机组送风温度设定值应根据供冷和供热工况能自动调整。
8 宜能根据新风机组送风温度来调节水阀的开度。
9 新风机组宜设置由室内CO2浓度控制送风量的自动调节系统;在人员密度相对较大且变化较大的房间,可根据室内CO2浓度或人数/人流监测,修改最小新风比或最小新风量的设定值。
10 新风机组的监测应符合下列规定:
1)新风机组应设置送风温度、湿度显示;
2)应设置新风过滤器两侧压差监测、压差超限报警;
3)应设置机组的自动/手动、启停状态的监测及阀门状态显示;
4)宜设置室外温、湿度监测;
5)应监测风机、水阀、风阀等设备的启停状态和运行参数。
11 当新风机组采用自带完整的控制系统设备时,应预留通信接口,并将信息纳入建筑设备监控系统。
11 当新风机组采用自带完整的控制系统设备时,应预留通信接口,并将信息纳入建筑设备监控系统。
18.9.2 对空调机组的监控应符合下列规定:
1 空调机组应设置风机、新风阀、回风阀、水阀的联锁控制。
2 应设置空调机组的自动/手动启停控制。
3 当发生火灾时,应接收消防联动控制信号联锁停机。
4 寒冷地区,空调机组应设置防冻开关报警和联锁控制。
5 机组送风温度设定值应能根据供冷和供热工况而改变。
6 宜能根据机组送/回风温度调节水阀的开度。
5 机组送风温度设定值应能根据供冷和供热工况而改变。
6 宜能根据机组送/回风温度调节水阀的开度。
7 宜能根据季节变化调节风阀的开度。
8 在定风量空调系统中,应根据回风或室内温度设定值,比例、积分连续调节冷水阀或热水阀开度,保持回风或室内温度不变。
9 在定风量空调系统中,应根据回风或室内湿度设定值,开关量控制或连续调节加湿除湿过程,保持回风或室内湿度不变。
9 在定风量空调系统中,应根据回风或室内湿度设定值,开关量控制或连续调节加湿除湿过程,保持回风或室内湿度不变。
10 在定风量系统中,宜设置根据回风或室内CO2浓度控制新风量的自动调节系统。
11 当采用单回路调节不能满足系统控制要求时,宜采用串级调节系统。
11 当采用单回路调节不能满足系统控制要求时,宜采用串级调节系统。
12 在变风量空调机组中,风机宜采用变频控制方式,对系统最小风量进行控制;送风量的控制应采用定静压法、变静压法或总风量法,并符合下列要求:
1)当采用定静压法时,应根据送风静压设定值控制变速风机转速或调节送风温度;
2)当采用变静压法时,应使送风管道静压值处于最小状态,且变风量箱风阀均处于85%~99%的开度,并在送风管道静压值处于最小状态时通过变频来调节空调系统的送风量;
3)当采用总风量法时,应根据所有变风量末端装置实时风量之和,控制风机转速调节空调系统的送风量。
13 空调机组的监测应符合下列规定:
1)空调机组应设置送、回风温度显示、趋势图;当有湿度控制要求时,应设置送、回风湿度显示;
2)空气过滤器应设置两侧压差的监测,超限报警;
3)宜设置室外(或新风)温、湿度监测及送风风速监测;
3)宜设置室外(或新风)温、湿度监测及送风风速监测;
4)应设置机组的自动/手动、启停状态的监测;
5)当有CO2浓度控制要求时,应设置CO2浓度监测,并显示其瞬时值。
14 当空调机组采用自带完整的控制系统设备时,应预留通信接口,并将信息纳入建筑设备监控系统。
18.9.3 风机盘管的监控应符合下列规定:
1 风机盘管宜由开关式温度控制器自动控制电动水阀通断,手动三速开关控制风机高、中、低三种风速转换;
2 风机启停应与电动水阀联锁,两管制冬夏均运行的风机盘管宜设手动控制冬夏季切换开关;
3 控制要求高的场所,宜由专用的风机盘管微控制器控制;微控制器应提供四管制的热水阀、冷冻水阀连续调节和风机三速控制,冬夏季自动切换两管制系统;
4 微控制器应提供以太网或现场总线通信接口,构成开放式现场网络层;
5 联网型的风机盘管微控制器应能通过建筑设备监控系统来控制风机盘管的启停和温度调节,亦可采用自成系统的设备。
18.9.4 变风量空调系统末端装置的选择,应符合下列规定:
1 当选用压力有关型变风量装置时,宜采用室内温度传感器、微控制器及电动风阀构成单回路闭环调节系统;控制器宜选择一体化微控制器,温度控制器与风阀电动执行器制成一体,可直接安装在变风量箱上;
2 当选用压力无关型变风量装置时,宜采用室内温度作为主调节参数,变风量装置风阀入口风量或风阀开度作为副调节参数,构成串级调节系统;控制器宜选择一体化微控制器,串级控制器与风阀电动执行器制成一体,可直接安装在变风量装置上。
5 联网型的风机盘管微控制器应能通过建筑设备监控系统来控制风机盘管的启停和温度调节,亦可采用自成系统的设备。
18.9.4 变风量空调系统末端装置的选择,应符合下列规定:
1 当选用压力有关型变风量装置时,宜采用室内温度传感器、微控制器及电动风阀构成单回路闭环调节系统;控制器宜选择一体化微控制器,温度控制器与风阀电动执行器制成一体,可直接安装在变风量箱上;
2 当选用压力无关型变风量装置时,宜采用室内温度作为主调节参数,变风量装置风阀入口风量或风阀开度作为副调节参数,构成串级调节系统;控制器宜选择一体化微控制器,串级控制器与风阀电动执行器制成一体,可直接安装在变风量装置上。
18.9.5 变风量空调系统末端装置的监控,应符合下列规定:
1 应监测变风量空调系统末端房间的温度、静压;
2 应监测变风量空调系统末端装置的风量;
3 应通过控制器调节变风量空调末端送风、回风风门开度及控制变风量空调末端再热器开关。
2 应监测变风量空调系统末端装置的风量;
3 应通过控制器调节变风量空调末端送风、回风风门开度及控制变风量空调末端再热器开关。
18.9.6 通风系统设备的监控,应符合下列规定:
1 应监测各风机运行状态,自动/手动状态及累计运行时间;
2 宜按照使用时间来控制风机的定时启/停;
3 应监测风机的故障报警信号;
4 宜能根据服务区域的风量平衡和压力等参数控制风机的启停台数和转速;
5 在地下停车库,可根据车库内CO2浓度或车辆数监测控制通风机的运行台数和转速;
6 对于变配电室等发热量和通风量较大的机房,宜根据使用情况或室内内温度监测控制风机的启停、运行台数和转速。
条文说明
18.9.1 新风机组所服务的对象主要有两类:一是新风机组与风机盘管配合的空调方式,主要为各房间提供一定的新鲜空气,满足室内卫生要求;二是采用直流式空调系统的房间,新风机组要负担新风和室内负荷,控制室内温、湿度参数,本条主要规定了新风机组的监控及新风机组的参数监测要求。
18.9.2 本条主要规定了常用空调机组的监控要求。常用空调机组主要包括定风量空调系统和变风量空调系统。
18.9.2 本条主要规定了常用空调机组的监控要求。常用空调机组主要包括定风量空调系统和变风量空调系统。
1 定风量系统( Constant Air Volume,CAV),即空调机吹出的风量一定,以提供空调区域所需要的冷(暖)气。当空调区域负荷变动时,则以改变送风温度来应付室内负荷,并达到维持室内温度与舒适区的要求。常用的中央空调系统为AHU(空调机)与冷水管系统(FCU系统)。这两者一般均以定风量(CAV)来供应空调区,为了应付室内部分负荷的变动,在AHU定风量系统以空调机的变温送风来处理,在一般FCU系统则以冷水阀ON/OFF控制来调节送风温度。
2 变风量系统( Varlable air volume,VAV),即空调机(AHU或FCU)可以调变风量。定风量系统为了应付室内部分负荷的变动,其AHU系统以空调机的变温送风来处理,而FCU系统则以冷水阀ON/OFF控制来调节送风温度。然而这两者在送风系统上浪费了大量能源。因为在长期低负荷时送风机亦均执行全风量运转而耗电,这不但不易维持稳定的室内温、湿度条件,而且浪费大量的能源。变风量系统就是针对上述缺点而采取的节能对策。变风量系统可分为两种:一种为AHU风管系统中的空调机变风量系统( AHU-VAV系统);另一种为FCU系统中的室内风机变风量系统( FCU-VAV系统)。 AHU-VAV系统是在全风管系统中将送风温度固定,以调节送风机送风量的方式来应付室内空调负荷的变动。 FCU-VAV系统则是将冷水供应量固定,在室内FCU加装无段变功率控制器改变送风量,即改变FCU的热交换率来调节室内负荷变动。这两种方式通过风量的调整来减少送风机的耗电量,同时也可增加热源机器的运转效率而节约热源耗电,因此可在送风及热源两方面同时获得节能效果。变风量系统控制的核心是对总风量进行控制,常用的总风量控制方法有定静压控制法、变静压控制法和总风量控制法等。
定静压控制一般是在送风系统的适当位置(常在离风机2/3处)设置静压传感器,在保持该点静压值一定的前提下,通过调节风机频率来改变空调系统的送风量。变静压控制时一般应将阀门开大或接近于全开(85%~99%的开度),并在送风管道静压值尽可能处于减小的前提下,通过变频来调节空调系统的送风量。总风量控制法是通过自动计量、统计求出各末端装置实时风量之和通过送风机相似特性及相关计算求出对应的送风机转速,并控制空调机组送风机在此转速运行,使送风量与负荷匹配。采用总风量与末端负荷匹配的总风量控制法可有效地进行VAV系统的节能运行控制。
3 串级调节在空调屮适用于调节对象纯滞后大、时间常数大或局部扰量大的场合。在单回路控制系统中,所有干扰量统统包含在调节回路中,其影响都反映在室温对给定值的偏差上。但对于纯滞后比较大的系统,单回路PID控制的微分作用对克服扰量影响是无能为力的。这是因为在纯滞后的时间里,参数的变化速度等于零,微分单元没有输出变化,只有等室内给定值偏差出现后才能进行调节,结果使调节品质变坏。如果设一个副控制路将空调系统的干扰源如室外温度的变化、新风量的变化、冷热水温度的变化等都纳入副控制回路,由于副控制回路对于这些干扰源有较快速的反应,通过主副回路的配合,将会获得较好的控制质量。另外,对调节对象时间常数大的系统,采用单回路的配合,将会获得较好的控制质量。对调节对象时间常数大的系统,采用单回路系统不仅超调量大,而且过渡时间长,同样,合琿地组成副回路可使超调量减小,过渡时间缩短。此外,如果系统中有变化剧烈,幅度较大的局部干扰时,系统就不易稳定,如果将这一同部干扰纳入副回路;则可大大增强系统的抗干扰能力。
定静压控制一般是在送风系统的适当位置(常在离风机2/3处)设置静压传感器,在保持该点静压值一定的前提下,通过调节风机频率来改变空调系统的送风量。变静压控制时一般应将阀门开大或接近于全开(85%~99%的开度),并在送风管道静压值尽可能处于减小的前提下,通过变频来调节空调系统的送风量。总风量控制法是通过自动计量、统计求出各末端装置实时风量之和通过送风机相似特性及相关计算求出对应的送风机转速,并控制空调机组送风机在此转速运行,使送风量与负荷匹配。采用总风量与末端负荷匹配的总风量控制法可有效地进行VAV系统的节能运行控制。
3 串级调节在空调屮适用于调节对象纯滞后大、时间常数大或局部扰量大的场合。在单回路控制系统中,所有干扰量统统包含在调节回路中,其影响都反映在室温对给定值的偏差上。但对于纯滞后比较大的系统,单回路PID控制的微分作用对克服扰量影响是无能为力的。这是因为在纯滞后的时间里,参数的变化速度等于零,微分单元没有输出变化,只有等室内给定值偏差出现后才能进行调节,结果使调节品质变坏。如果设一个副控制路将空调系统的干扰源如室外温度的变化、新风量的变化、冷热水温度的变化等都纳入副控制回路,由于副控制回路对于这些干扰源有较快速的反应,通过主副回路的配合,将会获得较好的控制质量。另外,对调节对象时间常数大的系统,采用单回路的配合,将会获得较好的控制质量。对调节对象时间常数大的系统,采用单回路系统不仅超调量大,而且过渡时间长,同样,合琿地组成副回路可使超调量减小,过渡时间缩短。此外,如果系统中有变化剧烈,幅度较大的局部干扰时,系统就不易稳定,如果将这一同部干扰纳入副回路;则可大大增强系统的抗干扰能力。
串级调节系统主回路以回风温度作为主参数构成主环,副回路以送风温度作为副参数构成副环,以回风温度重调送风温度设定值,提高控制系统调节品质,满足精密空调的要求。
18.9.4 变风量空调系统末端装置种类较多,但基本的控制原理分为压力有关型控制和压力无关型控制。按照是否补偿压力变化,末端装置分为压力有关刑和压力无关型。前者由温控器直接控制风阀,末端装置的送风量不但取决于控制风阀的开度,还取决于送风管道的静压。如果管道静压发生变化,则送风量也会变化,进而造成室内温度的变化,这种变风量空调系统末端装置为压力有关型。这种控制方式较为简单,控制中没有使用实际送风量参数。
压力无关型末端装置除了使用温控器外,还有一个风量传感器和一个风量控制器,温控器为主控器,风量控制器为副控器,构成串级控制环路。当末端入口压力变化时,通过末端的风量会发生变化,压力无关型末端可以较快地补偿这种压力变化维持原有风量。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
- 上一节:18.8 冷热源系统监控
- 下一节:18.10 给水与排水系统监控
目录导航
- 前言
- 1 总则
- 2 术语和缩略语
- 2.1 术语
- 2.2 缩略语
- 3 供配电系统
- 3.1 一般规定
- 3.2 负荷分级及供电要求
- 3.3 电源及供配电系统
- 3.4 电压等级选择和电能质量
- 3.5 负荷计算
- 3.6 无功补偿
- 4 变电所
- 4.1 一般规定
- 4.2 所址选择
- 4.3 配电变压器选择
- 4.4 主接线及电器选择
- 4.5 变电所型式和布置
- 4.6 35kV、20kV、10kV配电装置
- 4.7 低压配电装置
- 4.8 并联电力电容器装置
- 4.9 所用电源及操作电源
- 4.10 对土建专业的要求
- 4.11 对暖通及给水排水专业的要求
- 5 继电保护、自动装置及电气测量
- 5.1 一般规定
- 5.2 继电保护的基本规定
- 5.3 配电变压器保护
- 5.4 20kV或10kV线路保护
- 5.5 35kV线路保护
- 5.6 35kV、20kV或10kV母线分段断路器保护
- 5.7 并联电容器保护
- 5.8 10kV异步电动机(电动机容量<2MW)保护
- 5.9 备用电源自动投入装置
- 5.10 应急柴油发电机组与正常电源的切换
- 5.11 数字式综合保护装置
- 5.12 变电站综合自动化系统
- 5.13 二次回路
- 5.14 中央信号装置
- 5.15 电气测量
- 5.16 电能计量
- 6 自备电源
- 6.1 自备柴油发电机组
- 6.2 应急电源
- 6.3 不间断电源
- 7 低压配电
- 7.1 一般规定
- 7.2 低压配电系统
- 7.3 特低电压配电
- 7.4 导体选择
- 7.5 低压电器的选择
- 7.6 低压配电线路的保护
- 7.7 低压配电系统的电击防护
- 8 配电线路布线系统
- 8.1 一般规定
- 8.2 直敷布线
- 8.3 刚性金属导管布线
- 8.4 可弯曲金属导管布线
- 8.5 电缆桥架布线
- 8.6 刚性塑料导管(槽)布线
- 8.7 电力电缆布线
- 8.8 预制分支电缆布线
- 8.9 耐火电缆和矿物绝缘电缆布线
- 8.10 母线槽布线
- 8.11 电气竖井内布线
- 8.12 铝合金电缆布线
- 8.13 照明母线槽布线
- 9 常用设备电气装置
- 9.1 一般规定
- 9.2 电动机
- 9.3 电梯、自动扶梯和自动人行道
- 9.4 自动旋转门、电动门、电动卷帘门和电动伸缩门窗
- 9.5 舞台用电及放映设备
- 9.6 医用设备
- 9.7 交流充电桩
- 9.8 其他用电设备
- 10 电气照明
- 10.1 一般规定
- 10.2 照明方式与种类
- 10.3 照度水平与照明质量
- 10.4 应急照明
- 10.5 照明光源与灯具
- 10.6 照明供电与控制
- 10.7 景观照明
- 11 民用建筑物防雷
- 11.1 一般规定
- 11.2 建筑物的防雷分类
- 11.3 第二类防雷建筑物的雷电防护措施
- 11.4 第三类防雷建筑物的雷电防护措施
- 11.5 其他防雷保护措施
- 11.6 接闪器
- 11.7 引下线
- 11.8 接地网
- 11.9 雷电电磁脉冲防护
- 11.10 防雷装置的材料要求
- 12 电气装置接地和特殊场所的电气安全防护
- 12.1 一般规定
- 12.2 交流电气装置接地的范围
- 12.3 交流电气装置的接地和接地电阻
- 12.4 低压配电系统的接地形式和基本要求
- 12.5 接地装置
- 12.6 通用用电设备接地
- 12.7 保护等电位联结
- 12.8 屏蔽接地及防静电接地
- 12.9 智能化系统接地
- 12.10 潮湿场所的安全防护
- 13 建筑电气防火
- 13.1 一般规定
- 13.2 系统设置
- 13.3 火灾自动报警系统设计
- 13.4 消防设施联动控制设计
- 13.5 电气火灾监控系统设计
- 13.6 消防应急照明系统设计
- 13.7 系统供电
- 13.8 线缆选择及敷设
- 13.9 非消防负荷线缆与通信电缆的选择
- 14 安全技术防范系统
- 14.1 一般规定
- 14.2 入侵报警系统
- 14.3 视频监控系统
- 14.4 出入口控制系统
- 14.5 电子巡查系统
- 14.6 停车库(场)管理系统
- 14.7 楼宇对讲系统
- 14.8 传输线路
- 14.9 安防监控中心
- 14.10 安防综合管理系统
- 14.11 应急响应系统
- 15 有线电视和卫星电视接收系统
- 15.1 一般规定
- 15.2 有线电视系统设计原则
- 15.3 有线电视系统接入
- 15.4 卫星电视接收系统
- 15.5 自设前端
- 15.6 HFC 接入分配网
- 15.7 IP接入分配网
- 15.8 传输线路选择
- 16 公共广播与厅堂扩声系统
- 16.1 一般规定
- 16.2 公共广播系统
- 16.3 厅堂扩声系统
- 16.4 设备选择
- 16.5 设备布置
- 16.6 线路及敷设
- 16.7 控制室
- 16.8 供电电源、防雷与接地
- 17 呼叫信号和信息发布系统
- 17.1 一般规定
- 17.2 呼叫信号系统设计
- 17.3 信息引导及发布系统设计
- 17.4 时钟系统设计
- 17.5 设备选择及机房
- 17.6 供电电源、 防雷与接地
- 18 建筑设备监控系统
- 18.1 一般规定
- 18.2 建筑设备监控系统网络结构
- 18.3 管理网络层
- 18.4 控制网络层
- 18.5 现场网络层
- 18.6 建筑设备监控系统的软件
- 18.7 现场仪表的选择
- 18.8 冷热源系统监控
- 18.9 空调及通风系统监控
- 18.10 给水与排水系统监控
- 18.11 供配电系统监测
- 18.12 照明系统监控
- 18.13 电梯和自动扶梯系统监控
- 18.14 建筑设备一体化监控系统
- 19 信息网络系统
- 19.1 一般规定
- 19.2 网络系统设计原则
- 19.3 网络系统逻辑设计
- 19.4 网络系统物理设计
- 19.5 网络管理与网络安全
- 19.6 网络服务器选择
- 19.7 网络互联设计
- 19.8 网络应用规划
- 19.9 无线局域网络
- 20 通信网络系统
- 20.1 一般规定
- 20.2 信息接入系统
- 20.3 用户电话交换系统
- 20.4 数字无线对讲系统
- 20.5 移动通信室内信号覆盖系统
- 20.6 甚小口径卫星通信系统
- 20.7 数字微波通信系统
- 20.8 会议系统
- 20.9 多媒体教学系统
- 21 综合布线系统
- 21.1 一般规定
- 21.2 系统设计
- 21.3 系统配置
- 21.4 系统指标
- 21.5 设备间及电信间
- 21.6 工作区设备
- 21.7 线缆选择和敷设
- 21.8 接地
- 22 电磁兼容与电磁环境卫生
- 22.1 一般规定
- 22.2 电磁环境卫生
- 22.3 供配电系统的谐波防治
- 22.4 电子信息系统的电磁兼容设计
- 22.5 接地与等电位联结
- 23 智能化系统机房
- 23.1 一般规定
- 23.2 机房设置
- 23.3 机房设计与布置
- 23.4 环境条件和对相关专业的要求
- 23.5 机房供电、接地及防静电
- 23.6 消防与安全
- 24 建筑电气节能
- 24.1 一般规定
- 24.2 供配电系统节能设计
- 24.3 电气照明的节能设计
- 24.4 动力装置的节能设计
- 24.5 建筑设备监控系统节能设计
- 24.6 其他
- 25 建筑电气绿色设计
- 25.1 一般规定
- 25.2 光伏发电系统
- 25.3 导光设备
- 25.4 能效监管系统
- 26 弱电线路布线系统
- 26.1 一般规定
- 26.2 园区综合管道
- 26.3 园区配线设施
- 26.4 建筑物引入管
- 26.5 建筑物内配线管网
- 26.6 建筑物内配线设施
- 附录A 民用建筑中各类建筑物的主要用电负荷分级
- 附录B 建筑物、入户设施年预计雷击次数及可接受的年平均雷击次数的计算
- B.1 建筑物年预计雷击次数的计算
- B.2 建筑物入户设施年预计雷击次数及可接受的最大年平均雷击次数计算
- 附录C 浴盆和淋浴盆(间)区域的划分
- 附录D 游泳池和戏水池区域的划分
- 附录E 喷水池区域的划分
- 附录F 声压级及扬声器所需功率计算
- 附录 G 各类建筑物的混响时间推荐值及缆线规格计算与选择
- 本标准用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~