目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
8.5 横风向和扭转风振
8.5.1 对于横风向风振作用效应明显的高层建筑以及细长圆形截面构筑物,宜考虑横风向风振的影响。
8.5.2 横风向风振的等效风荷载可按下列规定采用:
1 对于平面或立面体型较复杂的高层建筑和高耸结构,横风向风振的等效风荷载wLK宜通过风洞试验确定,也可比照有关资料确定;
2 对于圆形截面高层建筑及构筑物,其由跨临界强风共振(旋涡脱落)引起的横风向风振等效风荷载wLK可按本规范附录H.1确定;
3 对于矩形截面及凹角或削角矩形截面的高层建筑,其横风向风振等效风荷载wLK可按本规范附录H.2确定。
注:高层建筑横风向风振加速度可按本规范附录J计算。
8.5.3 对圆形截面的结构,应按下列规定对不同雷诺数Re的情况进行横风向风振(旋涡脱落)的校核:
8.5.1 判断高层建筑是否需要考虑横风向风振的影响这一问题比较复杂,一般要考虑建筑的高度、高宽比、结构自振频率及阻尼比等多种因素,并要借鉴工程经验及有关资料来判断。一般而言,建筑高度超过150m或高宽比大于5的高层建筑可出现较为明显的横风向风振效应,并且效应随着建筑高度或建筑高宽比增加而增加。细长圆形截面构筑物一般指高度超过30m且高宽比大于4的构筑物。
8.5.2、8.5.3 当建筑物受到风力作用时,不但顺风向可能发生风振,而且在一定条件下也能发生横风向的风振。导致建筑横风向风振的主要激励有:尾流激励(旋涡脱落激励)、横风向紊流激励以及气动弹性激励(建筑振动和风之间的耦合效应),其激励特性远比顺风向要复杂。
一般情况下,当风速在亚临界或超临界范围内时,只要采取适当构造措施,结构不会在短时间内出现严重问题。也就是说,即使发生亚临界微风共振或超临界随机振动,结构的正常使用可能受到影响,但不至于造成结构破坏。当风速进入跨临界范围内时,结构有可能出现严重的振动,甚至于破坏,国内外都曾发生过很多这类损坏和破坏的事例,对此必须引起注意。
规范附录H.1给出了发生跨临界强风共振时的圆形截面横风向风振等效风荷载计算方法。公式(H.1.1-1)中的计算系数 是对j振型情况下考虑与共振区分布有关的折算系数。此外,应注意公式中的临界风速 与结构自振周期有关,也即对同一结构不同振型的强风共振,是不同的。
附录H.2的横风向风振等效风荷载计算方法是依据大量典型建筑模型的风洞试验结果给出的。这些典型建筑的截面为均匀矩形,高宽比 和截面深宽比(D/B)分别为4~8和0.5~2。试验结果的适用折算风速范围为。
大量研究结果表明,当建筑截面深宽比大于2时,分离气流将在侧面发生再附,横风向风力的基本特征变化较大;当设计折算风速大于10或高宽比大于8,可能发生不利并且难以准确估算的气动弹性现象,不宜采用附录H.2计算方法,建议进行专门的风洞试验研究。
高宽比 在4~8之间以及截面深宽比D/B在0.5~2之间的矩形截面高层建筑的横风向广义力功率谱可按下列公式计算得到:
图H.2.4给出的是将 =6.0代入该公式计算得到的结果,供设计人员手算时用。此时,因取高宽比为固定值,忽略了其影响,对大多数矩形截面高层建筑,计算误差是可以接受的。
本次修订在附录J中增加了横风向风振加速度计算的内容。横风向风振加速度计算的依据和方法与横风向风振等效风荷载相似,也是基于大量的风洞试验结果。大量风洞试验结果表明,高层建筑横风向风力以旋涡脱落激励为主,相对于顺风向风力谱,横风向风力谱的峰值比较突出,谱峰的宽度较小。根据横风向风力谱的特点,并参考相关研究成果,横风向加速度响应可只考虑共振分量的贡献,由此推导可得到本规范附录J横风向加速度计算公式(J.2.1)。
8.5.4、8.5.5 扭转风荷载是由于建筑各个立面风压的非对称作用产生的,受截面形状和湍流度等因素的影响较大。判断高层建筑是否需要考虑扭转风振的影响,主要考虑建筑的高度、高宽比、深宽比、结构自振频率、结构刚度与质量的偏心等因素。
8.5.6 高层建筑结构在脉动风荷载作用下,其顺风向风荷载、横风向风振等效风荷载和扭转风振等效风荷载一般是同时存在的,但三种风荷载的最大值并不一定同时出现,因此在设计中应当按表8.5.6考虑三种风荷载的组合工况。
表8.5.6主要参考日本规范方法并结合我国的实际情况和工程经验给出。一般情况下顺风向风振响应与横风向风振响应的相关性较小,对于顺风向风荷载为主的情况,横风向风荷载不参与组合;对于横风向风荷载为主的情况,顺风向风荷载仅静力部分参与组合,简化为在顺风向风荷载标准值前乘以0.6的折减系数。
虽然扭转风振与顺风向及横风向风振响应之间存在相关性,但由于影响因素较多,在目前研究尚不成熟情况下,暂不考虑扭转风振等效风荷载与另外两个方向的风荷载的组合。
说明 返回
顶部
- 上一节:8.4 顺风向风振和风振系数
- 下一节:8.6 阵风系数
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 荷载分类和荷载组合
- 3.1 荷载分类和荷载代表值
- 3.2 荷载组合
- 4 永久荷载
- 5 楼面和屋面活荷载
- 5.1 民用建筑楼面均布活荷载
- 5.2 工业建筑楼面活荷载
- 5.3 屋面活荷载
- 5.4 屋面积灰荷载
- 5.5 施工和检修荷载及栏杆荷载
- 5.6 动力系数
- 6 吊车荷载
- 6.1 吊车竖向和水平荷载
- 6.2 多台吊车的组合
- 6.3 吊车荷载的动力系数
- 6.4 吊车荷载的组合值、频遇值及准永久值
- 7 雪荷载
- 7.1 雪荷载标准值及基本雪压
- 7.2 屋面积雪分布系数
- 8 风荷载
- 8.1 风荷载标准值及基本风压
- 8.2 风压高度变化系数
- 8.3 风荷载体型系数
- 8.4 顺风向风振和风振系数
- 8.5 横风向和扭转风振
- 8.6 阵风系数
- 9 温度作用
- 9.1 一般规定
- 9.2 基本气温
- 9.3 均匀温度作用
- 10 偶然荷载
- 10.1 一般规定
- 10.2 爆炸
- 10.3 撞击
- 附录A 常用材料和构件的自重
- 附录B 消防车活荷载考虑覆土厚度影响的折减系数
- 附录C 楼面等效均布活荷载的确定方法
- 附录D 工业建筑楼面活荷载
- 附录E 基本雪压、风压和温度的确定方法
- E.1 基本雪压
- E.2 基本风压
- E.3 雪压和风速的统计计算
- E.4 基本气温
- E.5 全国各城市的雪压、风压和基本气温
- E.6 全国基本雪压、风压及基本气温分布图
- 附录F 结构基本自振周期的经验方式
- F.1 高耸结构
- F.2 高层建筑
- 附录G 结构振型系数的近似值
- 附录H 横风向及扭转风振的等效风荷载
- H.1 圆形截面结构横风向风振等效风荷载
- H.2 矩形截面结构横风向风振等效风荷载
- H.3 矩形截面结构扭转风振等效风荷载
- 附录J 高层建筑顺风向和横风向风振加速度计算
- J.1 顺风向风振加速度计算
- J.2 横风向风振加速度计算
- 本规范用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~